The 2-element interferometer

Fundamentals of Radio Interferometry: Chapter 4, part 1/3

Griffin Foster (& Julien Girard) SKA-SA/Rhodes University

NASSP 2016

The 2-element interferometer : a 2D spatial filter

$$\mathbf{f}_{u,v}^{l,m} = e^{-2j\pi(ul+vm)}$$

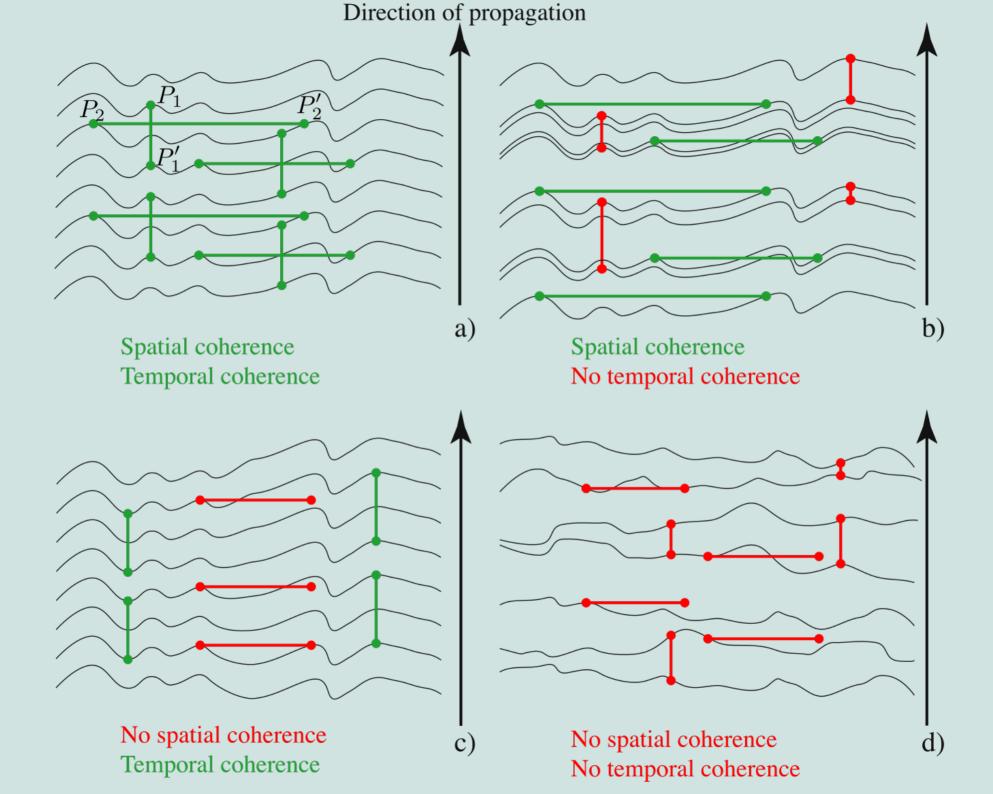
The Fourier kernel acts as a spatial filter. If (I,m) are the coordinates of the sky (u,v) are the spatial frequencies along the same axes. $\mathbf{\hat{e}}_v$

 $r_{uv} = \sqrt{u^2 + v^2}$

U

 $\hat{\mathbf{e}}_{u}$

1)



10 sino

Let's now consider 2 receivers illuminated by a plane wave from θ The signal will reach R₂ before R₁ and creates:

a time delay

 $\Delta L = \mathbf{b} \cdot \mathbf{s_0}$ $\Delta L = |\mathbf{b}| \cos \theta$

AL-plcos0

 S_0

and a projected baseline

 $\mathbf{b}_{\rm proj} = |\mathbf{b}| \sin \theta$

Let V_1 and V_2 the measured voltages at R_1 and R_2

 $V_1 = V_{01} \cos(\omega t + \varphi_1)$ $V_2 = V_{02} \cos(\omega t + \varphi_2)$

Let V_1 and V_2 the measured voltages at R_1 and R_2

 $V_1 = V_{01} \cos(\omega t + \varphi_1)$ $V_2 = V_{02} \cos(\omega t + \varphi_2)$

We use $\mathbf{S_0}$ as a reference direction of the incoming wave

Let V_1 and V_2 the measured voltages at R_1 and R_2

 $V_1 = V_{01}\cos(\omega t + \varphi_1) \quad V_2 = V_{02}\cos(\omega t + \varphi_2)$

We use s_0 as a reference direction of the incoming wave R_1 as the reference receiver, shifting the origin of time so that $\varphi_1 = 0$ We can rewrite the expression of the voltages as

$$V_1 = V_{01} \cos(\omega t), \quad V_2 = V_{02} \cos(\omega t + \varphi_2 - \varphi_1)$$

Let V_1 and V_2 the measured voltages at R_1 and R_2

 $V_1 = V_{01}\cos(\omega t + \varphi_1) \quad V_2 = V_{02}\cos(\omega t + \varphi_2)$

We use s_0 as a reference direction of the incoming wave R_1 as the reference receiver, shifting the origin of time so that $\varphi_1 = 0$ We can rewrite the expression of the voltages as

$$V_1 = V_{01} \cos(\omega t), \quad V_2 = V_{02} \cos(\omega t + \varphi_2 - \varphi_1)$$

 $arphi_2 - arphi_1$ is linked to ΔL the extra path required for the plane

wave to go from R_2 to $R_{1.}$

Let V_1 and V_2 the measured voltages at R_1 and R_2

 $V_1 = V_{01}\cos(\omega t + \varphi_1) \quad V_2 = V_{02}\cos(\omega t + \varphi_2)$

We use s_0 as a reference direction of the incoming wave R_1 as the reference receiver, shifting the origin of time so that $\varphi_1 = 0$ We can rewrite the expression of the voltages as

$$V_1 = V_{01} \cos(\omega t), \quad V_2 = V_{02} \cos(\omega t + \varphi_2 - \varphi_1)$$

 $arphi_2-arphi_1$ is linked to ΔL the extra path required for the plane wave to go from R₂ to R₁.

$$\varphi_2 - \varphi_1 = \Delta \Phi = \frac{\omega}{c} \Delta L$$
 with $\Delta L = \mathbf{b} \cdot \mathbf{s_0}$

The product of two signals can be implemented through the correlation operation.

The product of two signals can be implemented through the correlation operation.

A correlator is a device which multiplies two voltages

$$C = \langle V_1 V_2 \rangle_t$$

The product of two signals can be implemented through the correlation operation.

A correlator is a device which multiplies two voltages

$$C = \langle V_1 V_2 \rangle_t$$

$$C = \langle V_{01} V_{02} \cos \omega t \cos \left[\omega (t + \frac{\Delta L}{c}) \right] \rangle_t$$

$$\langle V_{01} V_{02} \cos \omega t \cos \left[\omega (t + \tau) \right] \rangle_t \quad \text{with} \quad \tau = \frac{\Delta L}{c}$$

U

The product of two signals can be implemented through the correlation operation.

A correlator is a device which multiplies two voltages

$$C = \langle V_1 V_2 \rangle_t$$

$$C = \langle V_{01} V_{02} \cos \omega t \cos \left[\omega (t + \frac{\Delta L}{c}) \right] \rangle_t$$

$$\langle V_{01} V_{02} \cos \omega t \cos \left[\omega (t + \tau) \right] \rangle_t \text{ with } \tau = \frac{\Delta L}{c}$$

$$C = V_0^2 \frac{\langle \cos(2\omega t + \tau) + \cos(\omega \tau) \rangle_t}{2}$$

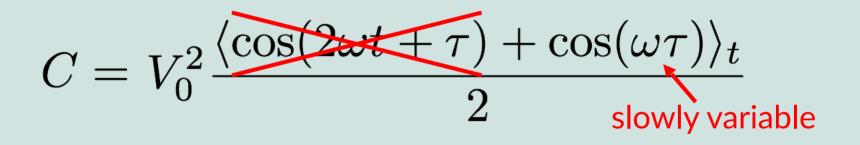
To reduce the level of noise, the correlator performs some averaging in time.

We will assume that this averaging time is long enough so that the fast temporal oscillations caused by $\,\omega t$ is smoothed out.

$$C = V_0^2 \frac{\langle \cos(2\omega t + \tau) + \cos(\omega \tau) \rangle_t}{2}$$

To reduce the level of noise, the correlator performs some averaging in time.

We will assume that this averaging time is long enough so that the fast temporal oscillations caused by ωt is smoothed out.



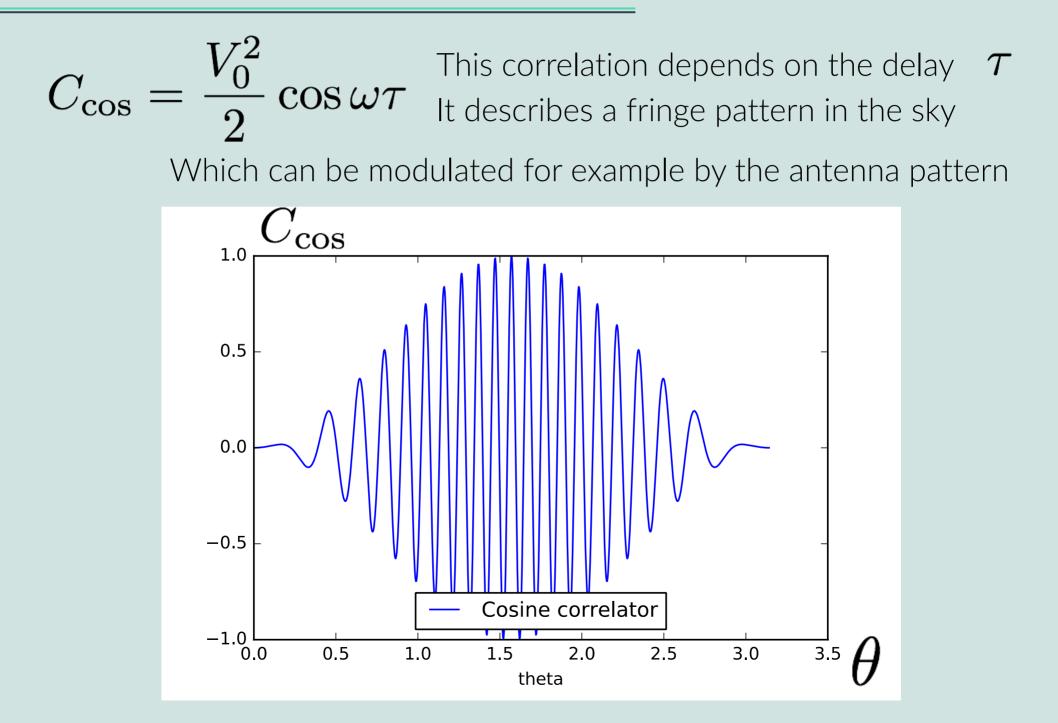
To reduce the level of noise, the correlator performs some averaging in time.

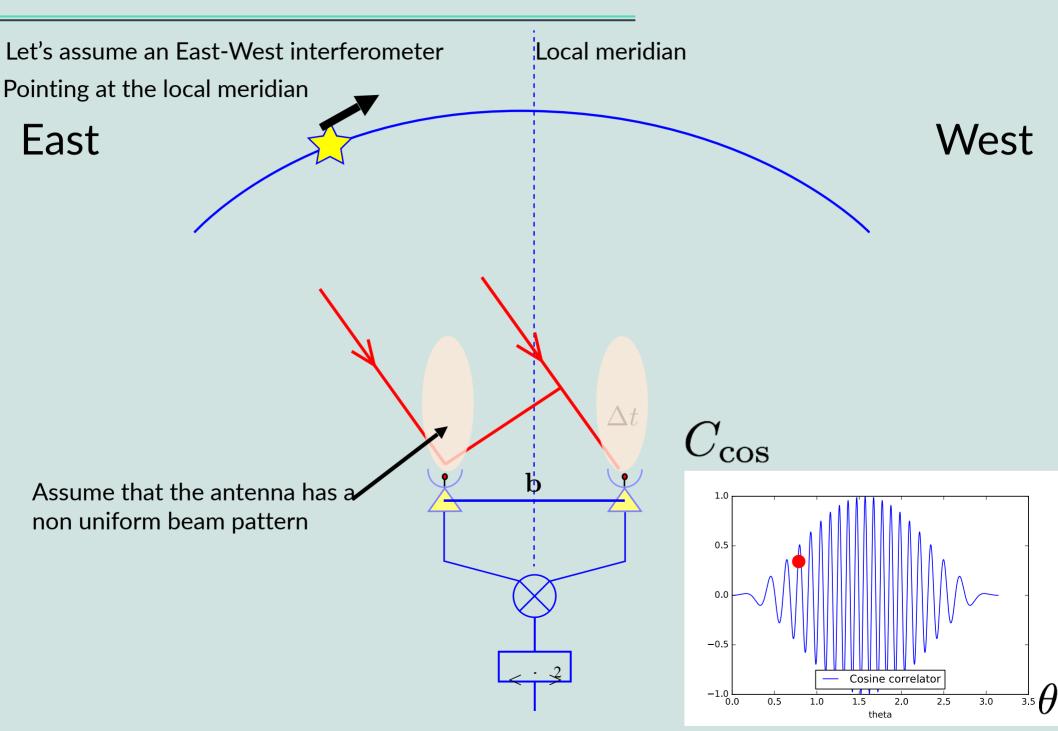
We will assume that this averaging time is long enough so that the fast temporal oscillations caused by $\,\omega t$ is smoothed out.

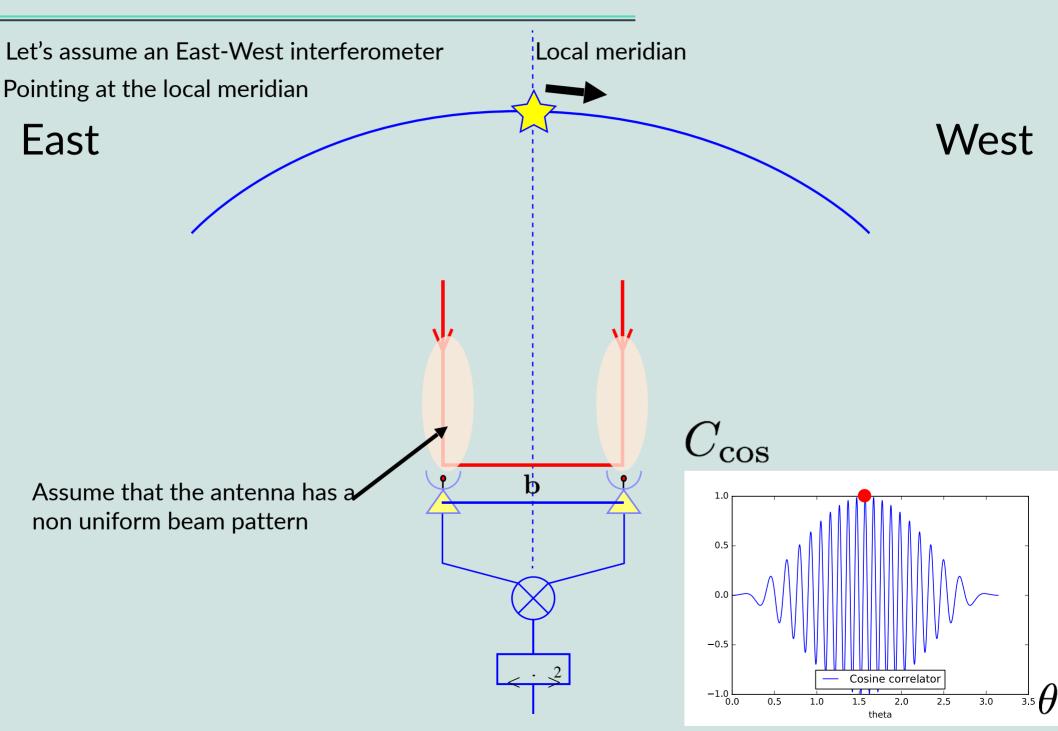
$$C = V_0^2 \frac{\langle \cos(2\omega t + \tau) + \cos(\omega \tau) \rangle_t}{2}$$
 slowly variable

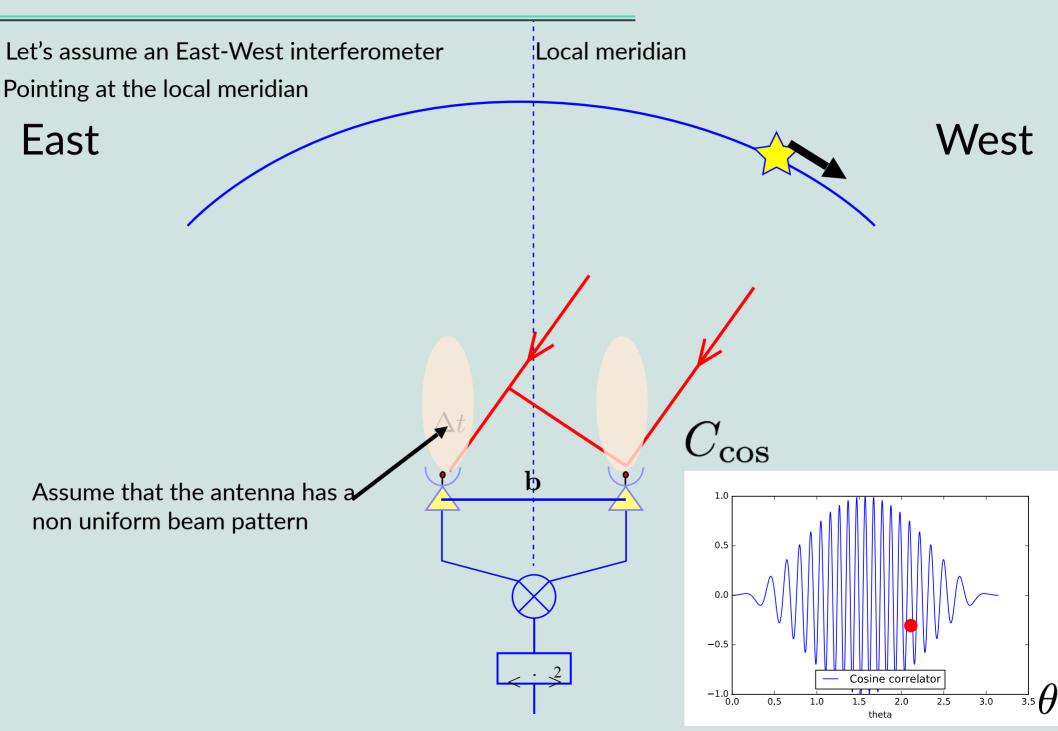
It is equivalent to filter the signals with a low-pass filter which role is to remove the fast-varying component of the signal. We call the remaining quantity the correlation given by a cosine correlator.

$$C_{\cos} = \frac{V_0^2}{2} \cos \omega \tau$$









In optics, the appearance of the interference fringe pattern depends on the location in space.

Here, the strengh of the correlation between the two measured signals will depend on the delay between R_1 and R_2 and therefore, on the direction S_0

In optics, the appearance of the interference fringe pattern depends on the location in space.

Here, the strengh of the correlation between the two measured signals will depend on the delay between R_1 and R_2 and therefore, on the direction S_0

We can define:

The fringe phase
$$\phi = \omega au = rac{\omega}{c} |\mathbf{b}| \cos heta = rac{2\pi}{\lambda} |\mathbf{b}| \cos heta$$

In optics, the appearance of the interference fringe pattern depends on the location in space.

Here, the strengh of the correlation between the two measured signals will depend on the delay between R_1 and R_2 and therefore, on the direction S_0

We can define:

The fringe phase
$$\phi = \omega au = rac{\omega}{c} |\mathbf{b}| \cos heta = rac{2\pi}{\lambda} |\mathbf{b}| \cos heta$$

And its derivative, the fringe rate:

The fringe rate $|rac{d\phi}{d\theta}| = rac{2\pi}{\lambda} |\mathbf{b}\sin\theta| = rac{2\pi}{T_f}$ The fringe period T_f

The correlation of two measured signals can be associated with the angular position of the source with respect to the physical baseline.

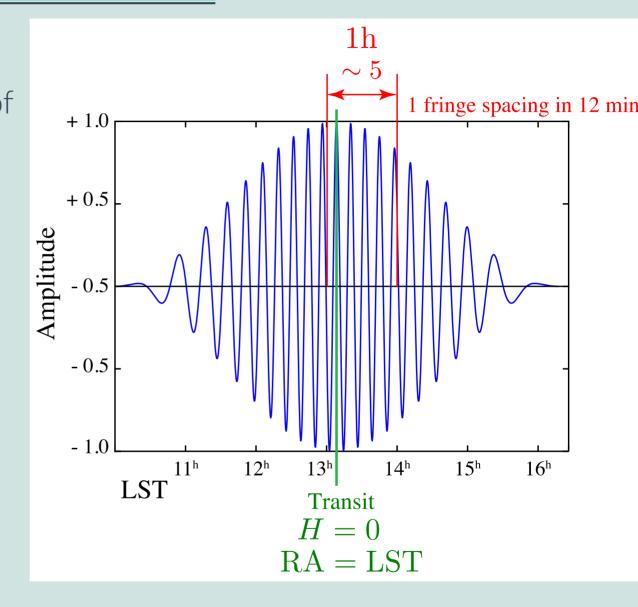
If λ is small enough compared to the projected baseline $|{f b}|\sin heta$

then the phase of the correlation can precisely track the position of a source.

As a consequence, the correlation is sensitive to spatial variations of spatial period T_f .

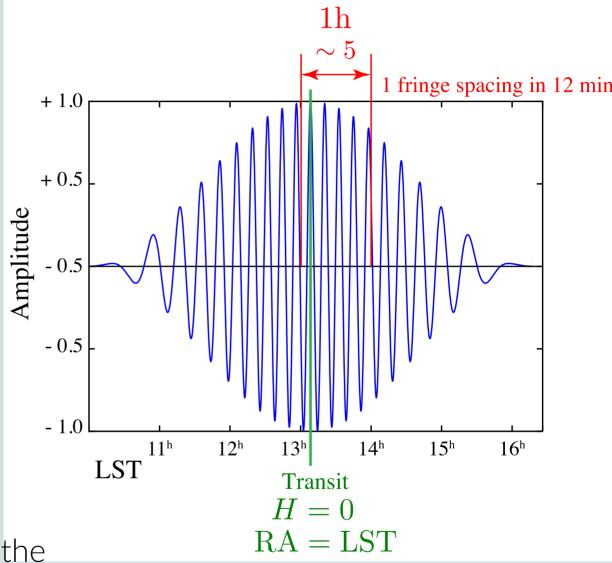
which means that a 2-element interferometer acts as spatial filter for this spatial frequency.

Estimation of lpha High precision measurement of the transit time



Estimation of $\, lpha \,$

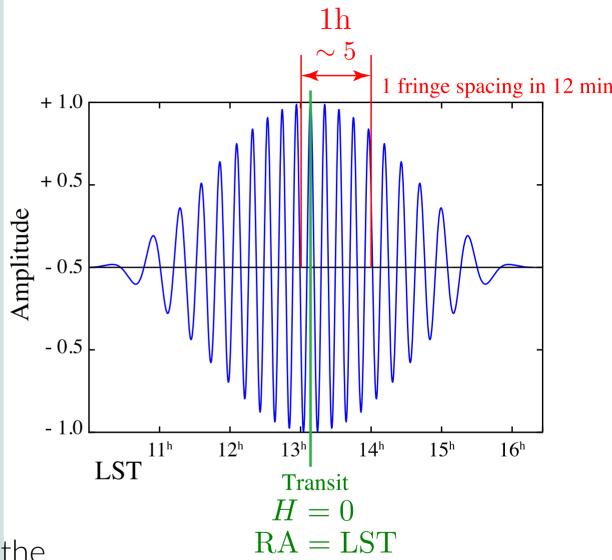
- High precision measurement of the transit time
- The transit time can be derived from the maximum of the fringe enveloppe.
- It corresponds to the maximum elevation of the source combined to the maximum of the response of the antennas pointing at the local meridian.



The transit time corresponds to the moment when the LST is equal to the RA

Estimation of $\, lpha \,$

- High precision measurement of the transit time
- The transit time can be derived from the maximum of the fringe enveloppe.
- It corresponds to the maximum elevation of the source combined to the maximum of the response of the antennas pointing at the local meridian.



The transit time corresponds to the moment when the LST is equal to the RA

Here, we can estimate graphically that $~~lpha \sim 13^{
m h} 07^{
m m}$

Estimation of $\,\delta\,$

We need to measure the fringe spacing and the fringe rate of the source using the Earth Rotation.

We define the fringe spacing

 $\Delta l_f \sim \frac{\lambda}{|\mathbf{b}|}$

the measured angular distance on the sky corresponding to one spatial period of the fringe pattern projected on the sky.

We define the fringe rate

$d\phi$
$\overline{d\theta}$

the time required by the source to cross one spatial period of the fringe pattern.

Estimation of $\,\delta\,$

We need to measure the fringe spacing and the fringe rate of the source using the Earth Rotation.

We define the fringe spacing

 $\Delta l_f \sim \frac{\lambda}{|\mathbf{b}|}$

dß

the measured angular distance on the sky corresponding to one spatial period of the fringe pattern projected on the sky.

We define the fringe rate

the time required by the source to cross one spatial period of the fringe pattern.

In our example:

$$\begin{array}{l} \Delta l_f \sim \frac{1}{2864} \; \mathrm{rad} = 0.02 \; \mathrm{rad} \approx 1.14^{\circ} \, \mathrm{(given)} \\ \\ \frac{d\phi}{d\theta} \; \sim 12 \; \mathrm{min} \, (\sim 5 \; \mathrm{periods} \; \mathrm{are} \; \mathrm{crossed} \; \mathrm{in} \; 1\mathrm{h} \; \mathrm{of} \\ \\ \mathrm{observation)} \end{array}$$